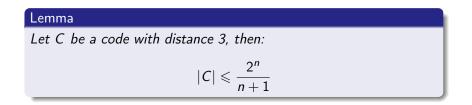
Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Icecture 17: Perfect Codes and Gilbert-Varshamov Bound



- Codes that meet this bound: Perfect codes
- Hamming code is a perfect code

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 0 0 Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Hamming Bound

Lemma

Let C be a code with distance d, then:

$$|C| \leqslant \frac{2^n}{\sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{i}}$$

Proof: Think about
$$B(c, \lfloor rac{d-1}{2}
floor)$$
, for any $c \in C$

Theorem (Tietavainen and van Lint)

There following are all the binary perfect codes:

- Hamming code
- The [23, 12, 7]₂ Golay code
- Trivial codes ($\{0\}, \{1^n, 0^n\}$ for odd $n, \{0, 1\}^n$)

3.5

Definition (Dual Code)

For a linear code C, define

$$C^{\perp} := \{ z \colon z \in \mathbb{F}_2^n, \forall c \in C \text{ we have } z^{\mathsf{T}}c = 0 \}$$

- $(C^{\intercal})^{\intercal} = C$
- If H is the parity check matrix for C then H is the generator matrix for C^{T}
- If $C^{\intercal} \subseteq C$ then C is called self-orthogonal
- If $C^{\intercal} = C$ then C is called self-dual

-

- Dual code of (generalized) Hamming code is Simplex code (it is [2^r - 1, r]₂ code)
- Add an all zero column of the parity check matrix of (generalized) Hamming code. The code generated by it is: Hadamard code (it is [2^r, r]₂ code). Its distance is 2^{r-1}.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) = (回 > (回 >)) = (回 > (回 >)) = (\Pi > (\cup >)) = (\Pi > (\square >)) = (\Pi > (

Volume of a Ball

• Let $\operatorname{Ball}_q(n,\ell)$ be the set of all elements in \mathbb{F}_q^n with weight $\leqslant \ell$

Definition (Volume)

Size of $Ball_q(n, \ell)$ is:

$$\operatorname{Vol}_q(n,\ell) := \sum_{j=0}^{\ell} \binom{n}{j} (q-1)^j$$

Definition (Largest Code)

The largest q-ary code of block length n and distance d is defined to have $A_q(n, d)$ codewords

Lemma (Gilbert-Varshamov Bound)

$$A_q(n,d) \geqslant rac{q^n}{\operatorname{Vol}_q(n,d-1)}$$

- For sets A, B, we define $A + B = \{a + b \colon a \in A, b \in B\}$
- Let $C = \emptyset$
- Greedily add to C any $c \in \mathbb{F}_q^n$ not covered in $C + \mathsf{Ball}_q(n, d-1)$
- If $|C| < A_q(n, d)$ then $|C + \text{Ball}_q(n, d 1)| < q^n$ and there exists such c

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gilber-Varshamov Bound: Linear Codes

Lemma (Gilbert-Varshamov Bound)

There exists a linear $[n, k]_q$ code C such that

$$k \geqslant \left\lfloor \log_q \frac{q^n}{\operatorname{Vol}_q(n, d-1)} \right\rfloor$$

• Suppose
$$C = \langle v_1, \ldots, v_{k-1} \rangle$$

• Define
$$S = C + Ball_q(n, d - 1)$$

- If $\mathbb{F}_q^n \setminus S$ is non-empty, then choose v_k from it
- Note that $v_k \not\in S$
- We want to claim:

Claim

For any $v \in C$ and $\alpha \in \mathbb{F}_q$, the codeword $v + \alpha v_k$ is not in S

• If the claim is true then we are done

4 □ ▷ < ⑦ ▷ < ≧ ▷ < ≧ ▷ ≧ ♥ ○ ○ ○</p>
Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Proof of the claim:

- Suppose there exists $v \in C, \alpha \in \mathbb{F}_q$ such that $v + \alpha v_k \in S$
- So, there exists $v' \in C$ such that: $\Delta(v + \alpha v_k, v') < d$
- Implies, $\Delta(\alpha v_k, (v' v)) < d$
- Let $v'' = \alpha^{-1}(v' v)$ and $v'' \in C$
- So, $v_k \in \{v''\} + \operatorname{Ball}_q(n, d-1) \subseteq S$, a contradiction

(日本)(周本)(王本)(王本)(王本)

Definition (Entropy Function)

$$h_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x)$$

• For
$$q = 2$$
, the binary entropy function
 $h(x) = -x \log x - (1 - x) \log(1 - x)$

Lemma

$$(h_q(p) - o(1))n \leqslant \log_q \operatorname{Vol}_q(n, pn) \leqslant h_q(p)n$$

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・ Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

э

Theorem (Asymptotic GV Bound)

For every prime power q, $p \in (0, 1)$ and $\varepsilon \in (0, 1 - h_q(p))$, there exists n_0 such that for all $n \ge n_0$ there exists an $[n, k, d]_q$ code where d = pn and $k = (1 - h_q(p) - \varepsilon)n$. In fact, a random generator matrix $G \in \mathbb{F}_q^{k \times n}$ corresponds to such a code, except with probability $\exp(-\Omega(n))$.

Proof of Full Row Rank:

- Probability that the *i*-th row is in the span of previous (i-1) rows: $q^{i-1}/q^n < q^{-(n-k)}$
- Probability that all rows are linearly independent (by union bound) ≤ kq^{-(n-k)} = exp(-Ω(n))

Proof of high distance:

- Linear Code has low distance if and only if there exists a low weight codeword
- For $S \subseteq [k]$, let $G_S := \bigoplus_{i \in S} G_i$, where G_i is the *i*-th row of the matrix
- Fix S and consider the random variable G_S
- Note that it is a uniform variable over \mathbb{F}_q^n and the probability that G_S has weight $\leqslant \ell$ is $\operatorname{Vol}_q(n,\ell)/q^n$
- Therefore we have: $\Pr_{G}[G_{S} \in \mathsf{Ball}_{q}(n,d-1)] \leqslant q^{-(1-h_{q}(p))n}$
- Now,

 $\Pr_{G}[\exists S \colon G_{S} \in \mathsf{Ball}_{q}(n, d-1)] \leqslant q^{k} \cdot q^{-(1-h_{q}(p))n} \leqslant q^{-\varepsilon n}$

- Prove: Previous theorem also holds true for linear codes defined by choosing a random parity check matrix
- Prove: Previous theorem also holds true for random generator matrices in systematic form
- Think: Can we beat the GV bound using explicit constructions?