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Maximality of Hamming code

Lemma
Let C be a code with distance 3, then:

|C | 6 2n

n + 1

Codes that meet this bound: Perfect codes
Hamming code is a perfect code
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Hamming Bound

Lemma
Let C be a code with distance d , then:

|C | 6 2n∑b d−1
2 c

i=0

(
n
i

)
Proof: Think about B(c ,

⌊
d−1

2

⌋
), for any c ∈ C

Theorem (Tietavainen and van Lint)

There following are all the binary perfect codes:
Hamming code
The [23, 12, 7]2 Golay code
Trivial codes ({0}, {1n, 0n} for odd n, {0, 1}n)
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Dual Code

Definition (Dual Code)

For a linear code C , define

C⊥ := {z : z ∈ Fn
2,∀c ∈ C we have zᵀc = 0}

(Cᵀ)ᵀ = C

If H is the parity check matrix for C then H is the generator
matrix for Cᵀ

If Cᵀ ⊆ C then C is called self-orthogonal
If Cᵀ = C then C is called self-dual
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Simplex and Hadamard Code

Dual code of (generalized) Hamming code is Simplex code (it
is [2r − 1, r ]2 code)
Add an all zero column of the parity check matrix of
(generalized) Hamming code. The code generated by it is:
Hadamard code (it is [2r , r ]2 code). Its distance is 2r−1.
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Volume of a Ball

Let Ballq(n, `) be the set of all elements in Fn
q with weight 6 `

Definition (Volume)

Size of Ballq(n, `) is:

Volq(n, `) :=
∑̀
j=0

(
n
j

)
(q − 1)j

Definition (Largest Code)

The largest q-ary code of block length n and distance d is defined
to have Aq(n, d) codewords
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Gilbert-Varshamov Bound

Lemma (Gilbert-Varshamov Bound)

Aq(n, d) >
qn

Volq(n, d − 1)

For sets A,B , we define A + B = {a + b : a ∈ A, b ∈ B}
Let C = ∅
Greedily add to C any c ∈ Fn

q not covered in
C + Ballq(n, d − 1)

If |C | < Aq(n, d) then |C + Ballq(n, d − 1)| < qn and there
exists such c
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Gilber-Varshamov Bound: Linear Codes

Lemma (Gilbert-Varshamov Bound)

There exists a linear [n, k]q code C such that

k >

⌊
logq

qn

Volq(n, d − 1)

⌋

Suppose C = 〈v1, . . . , vk−1〉
Define S = C + Ballq(n, d − 1)

If Fn
q \ S is non-empty, then choose vk from it

Note that vk 6∈ S

We want to claim:

Claim
For any v ∈ C and α ∈ Fq, the codeword v + αvk is not in S

If the claim is true then we are done
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Gilber-Varshamov Bound: Linear Codes (continued)

Proof of the claim:
Suppose there exists v ∈ C , α ∈ Fq such that v + αvk ∈ S

So, there exists v ′ ∈ C such that: ∆(v + αvk , v
′) < d

Implies, ∆(αvk , (v
′ − v)) < d

Let v ′′ = α−1(v ′ − v) and v ′′ ∈ C

So, vk ∈ {v ′′}+ Ballq(n, d − 1) ⊆ S , a contradiction
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Entropy Function

Definition (Entropy Function)

hq(x) = x logq(q − 1)− x logq x − (1− x) logq(1− x)

For q = 2, the binary entropy function
h(x) = −x log x − (1− x) log(1− x)

Lemma

(hq(p)− o(1))n 6 logq Volq(n, pn) 6 hq(p)n
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Asymptotic GV Bound for Linear Codes

Theorem (Asymptotic GV Bound)

For every prime power q, p ∈ (0, 1) and ε ∈ (0, 1− hq(p)), there
exists n0 such that for all n > n0 there exists an [n, k , d ]q code
where d = pn and k = (1− hq(p)− ε)n. In fact, a random
generator matrix G ∈ Fk×n

q corresponds to such a code, except
with probability exp(−Ω(n)).

Proof of Full Row Rank:
Probability that the i-th row is in the span of previous (i − 1)
rows: qi−1/qn < q−(n−k)

Probability that all rows are linearly independent (by union
bound) 6 kq−(n−k) = exp(−Ω(n))
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Asymptotic GV Bound for Linear Codes (continued)

Proof of high distance:
Linear Code has low distance if and only if there exists a low
weight codeword
For S ⊆ [k], let GS := ⊕i∈S Gi , where Gi is the i-th row of
the matrix
Fix S and consider the random variable GS

Note that it is a uniform variable over Fn
q and the probability

that GS has weight 6 ` is Volq(n, `)/qn

Therefore we have: PrG [GS ∈ Ballq(n, d − 1)] 6 q−(1−hq(p))n

Now,
PrG [∃S : GS ∈ Ballq(n, d − 1)] 6 qk · q−(1−hq(p))n 6 q−εn
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More Perspective

Prove: Previous theorem also holds true for linear codes
defined by choosing a random parity check matrix
Prove: Previous theorem also holds true for random generator
matrices in systematic form
Think: Can we beat the GV bound using explicit
constructions?

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound


