


Maximality of Hamming code

Let C be a code with distance 3, then:

2[1

C| <
€] n+1

o Codes that meet this bound: Perfect codes

@ Hamming code is a perfect code
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Hamming Bound

Let C be a code with distance d, then:

1€l <

Proof: Think about B(c, |45 ]), for any c € C

Theorem (Tietavainen and van Lint)

There following are all the binary perfect codes:
@ Hamming code
@ The [23,12,7]> Golay code
e Trivial codes ({0}, {1",0"} for odd n, {0,1}")
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Dual Code

Definition (Dual Code)

For a linear code C, define

Ct:= {z: z € F},Vc € C we have zTc = 0}

(cnr=C

If H is the parity check matrix for C then H is the generator
matrix for CT

If CT C C then C is called self-orthogonal

If CT = C then C is called self-dual
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Simplex and Hadamard Code

@ Dual code of (generalized) Hamming code is Simplex code (it
is [2" — 1, r]> code)

@ Add an all zero column of the parity check matrix of
(generalized) Hamming code. The code generated by it is:
Hadamard code (it is [27, r]> code). Its distance is 2771
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Volume of a Ball

o Let Bally(n,¢) be the set of all elements in Fg with weight < ¢

Definition (Volume)

Size of Ballg(n, ?) is:

Definition (Largest Code)

The largest g-ary code of block length n and distance d is defined
to have A4(n, d) codewords
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Gilbert-Varshamov Bound

Lemma (Gilbert-Varshamov Bound)

n

q
> 1
Aq(n,d) > Volg(n,d — 1)

For sets A, B, we define A+ B={a+ b:ac A bc B}
Let C=10

Greedily add to C any ¢ € Fg not covered in

C + Ballg(n,d — 1)

If |C| < Ag(n, d) then |C + Ballg(n,d —1)| < ¢" and there
exists such ¢
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Gilber-Varshamov Bound: Linear Codes

Lemma (Gilbert-Varshamov Bound)

There exists a linear [n, k]q code C such that

q"
k> |log, c——F7——
{qu Volg(n,d — I)J

@ Suppose C = (vy,..., Vk_1)

@ Define S = C + Ballg(n,d — 1)

o If Fg \ S is non-empty, then choose vy from it
@ Notethat vy & S

o We want to claim:

For any v e C and a € [Fq, the codeword v + avc is not in S

o If the claim is true then we are done
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Gilber-Varshamov Bound: Linear Codes (continued)

Proof of the claim:
@ Suppose there exists v € C,a € Fg such that v+ av, € S
@ So, there exists v/ € C such that: A(v + av, V') < d
o Implies, A(avg, (v —v)) < d
o let v/ =a}(v —v)and v/ € C
°

So, vk € {v"} +Ballg(n,d — 1) C S, a contradiction

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound



Entropy Function

Definition (Entropy Function)

hq(x) = xlog,(q — 1) — xlog, x — (1 — x) log,(1 — x)

@ For g = 2, the binary entropy function
h(x) = —xlog x — (1 — x) log(1 — x)

(hq(p) — o(1))n < logg Volg(n. pn) < hq(p)n
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Asymptotic GV Bound for Linear Codes

Theorem (Asymptotic GV Bound)

For every prime power q, p € (0,1) and € € (0,1 — hg(p)), there
exists ng such that for all n > ng there exists an [n, k, d|q code
where d = pn and k = (1 — hq(p) — €)n. In fact, a random
generator matrix G € IFSX” corresponds to such a code, except
with probability exp(—S2(n)).

Proof of Full Row Rank:

@ Probability that the i-th row is in the span of previous (i — 1)
rows: q'~1/q" < g~ (k)

@ Probability that all rows are linearly independent (by union
bound) < kg~ ("~k) = exp(—Q(n))
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Asymptotic GV Bound for Linear Codes (continued)

Proof of high distance:

@ Linear Code has low distance if and only if there exists a low
weight codeword

e For S C [k], let Gs := ®jcs Gj, where G; is the i-th row of
the matrix

@ Fix S and consider the random variable Gg

o Note that it is a uniform variable over Fy and the probability
that Gs has weight < £ is Volg(n, ¢)/q"

o Therefore we have: Prg[Gs € Bally(n,d — 1)] < g~(—ha(P))n

o Now,
Prg[3S: Gs € Bally(n,d — 1)] < gk - g~ (—ha(P))n < g=en
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More Perspective

@ Prove: Previous theorem also holds true for linear codes
defined by choosing a random parity check matrix

@ Prove: Previous theorem also holds true for random generator
matrices in systematic form

@ Think: Can we beat the GV bound using explicit
constructions?

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound



